NGC1961 and group study draft notes

No Comments

NGC 1961 group data recorded between 23/09/2021 and 06/12/2021 with William Optics Redcat 51 and ASI1600mm Pro at -20C, LRGB subframes with 60sec. exposure, Ha and Oiii narrowband subframes at 180 seconds, from Livorno home town, under Bortle 6 sky.

Ha and Oiii narrowband channel records I used to boost respectively R and GB channel; starless and stars final integration in Photoshop as blending layers groups with due adjustements.

Annotated integration (by PixInSight) evinced the huge quantities of galaxies available in this pretty wide field, I thus focused my study about NGC 1961 group and peculiarities of NGC 1961 galaxy.

Located at about 180 million light years away NGC 1961 resides in the constellation of Camelopardalis and it is classified as an intermediate spiral and an Active Galactic Nuclei – AGN type of galaxy, with intermediate spirals in between “barred” and “unbarred” status, meaning they don’t have a well-defined bar of stars at their centers. As other AGN, there is a very bright center that often far outshine the rest of the galaxy at certain wavelengths of light, and this kind of galaxies likely presents with a supermassive black hole at their cores churning out bright jets and winds that shape their evolution; NGC 1961 is a fairly common type of AGN as it emits low-energy-charged particles[i].

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) data retrieved from MAST archive permitted the elaboration of colorful image cropped to NGC 1961 and surroundings,

with annotations of limitrophe Peculiar Galaxies identification and references of field coordinate.

Rubin, Ford and Roberts, 1979, Pence and Rots 1996 defined NGC 1961 as one of the most massive known Sc spiral galaxies[ii] with an asymmetric optical appearance[iii], a starburst nucleus[iv] and strong neutral Hydrogen Hi emission[v].

According to Gotterman and colleagues the properties of the peculiar disc galaxy NGC1961 have been rediscussed recently in the light of the new observations by Shostak et.al., 1982[vi] who investigated deeply about its mass, estimating to be at least 1,5 x 10¹² Mꙩ. This makes NGC 1961 the most massive disc system known, peculiar also in being situated at the North-West edge of a group of which previously five, then seven galaxies have been detected at today[vii]:

  • NGC 1961: α(2000) 05.42.04, δ +69.23, type Sc, V 3938 ± 4;
  • B: α(2000) 05.42.30, δ +69.15, type S, V 3895 ± 20, a 15.0 apparent magnitude edge-on spiral, so weakly detected, with H1 emission that Shostak and team 1982 interpreted as typical of small spirals;
  • A: α(2000) 05.43.24, δ +69.26, type Sb, V 4108 ± 15, with the smallest projected distance to NGC 1961, is a small (<1’) high surface-brightness galaxy with apparent magnitude 14.8, and an H1 detection suggesting Pence and teams to be classifiable as form to spiral B, with thick, high surface-brightness arms[viii].
  • UGC 3342: α(2000) 05.44.30, δ +69.18, type Scd, V 3974 ± 9, edge-on spiral with an uncertain classification of Sc from Nilson 1973, and an apparent magnitude of 15.4 (Zwicky and Herzog, 1968), with double peaked H1 distribution similar to that found in normal edge-on spirals, as according to Sancisi and Allen 1979[ix];
  • UGC 3344: α(2000) 05.44.54, δ +69.10, type Sbc, V 4282 ± 12;
  • MGC 12-6-12: α(2000) 05.45.36, δ +69.03, type S, V 4292 ± 10;
  • UGC 3349: α(2000) 05.46.32, δ +69.03, type Sab, V 4314 ± 9, 14.4 magnitude spiral classified as Sa-b by Nilson 1973, with long thin, tightly-wound arms[x].

Gotterman team considered two alternatives’ hypotheses concerning the group: NGC1961, together with nearby galaxies, constitute a bound group or NGC1961 is an interloper impinging upon a bound system consisting of the other five galaxies.

If the full group of six galaxies is stable, then the analysis confirms the mass of NGC 1961 to be greater than 10¹² Mꙩ, with a very less obvious modality of distribution of masses, strictly related to the presence of a significant and massive halo, with a radius of 244 Kiloparsec.

Considering the second hypothesis, if NGC 1961 is an interloper in the reduced group of five galaxies, it does require several coincidences, as for instance at least 2 x 10¹² Mꙩ of unseen non-gaseous form of matter to stabilize this smaller group, with interesting questions about how this mass is distributed[xi], and this is coherent with Fabbiano and Trinchieri 1992 studies of NGC 1961 group suggested it was likely to contain a dense intragroup medium (IGM)[xii].

According to Pence and Rots 1997[xiii] the presence of hot X-ray emitting stars in small groups of galaxies has been a topic of renewed research interest: as for instance evinced by Forman and Jones or Biermann, Kronberg and Madore[xiv] while cluster and dense compact group of galaxies have long been known to have diffuse X-ray emission, it is only recently that X-ray emission has also been found in significant numbers of the smaller groups of galaxies which scholars believe to be much common in the universe[xv]. Moreover, according to Ponman & Bertram 1993 and David and colleagues 1994[xvi], presence of hot gas in these small groups provides important clues about their origin and evolution, and measurement of the radial gas density and temperature profiles also provides the most reliable estimate of the total mass of the group.

Pence team observation by ROSAT X-ray observatory look for diffuse X-ray emission from the group, calibrated by the exposure map generation algorithm developed by Snowden 1994[xvii], available in the ROSAT IDL library[xviii] (Reichart 1993). They detected 47 probable X-ray sources with only three clearly identifiable with optical objects: the second brightest X-ray source in the field is associated with NGC 1961 galaxy and two other faints coincide with 8th magnitude foreground B stars, with other six galaxies in the group, but none of them had detectable X-ray emission. Moreover, there was also no obvious diffuse emission either around NGC 1961 or near the center of the group.

Pence and colleagues evinced that NGC 1961 Is the only galaxy in the group to have detectable X-ray emission, and confirming the previous Einstein observations made by Shostak team 1982, it seems possible to suggest that the X-ray flux isn’t centered on the galaxy but concentered in an arc of 180 degrees of emission on the southeast side of the galaxy. This was taken as evidence of a shock front as NGC 1961 plowing into a dense IGM, leaving a plume of stripped H1 gas in its wake to the northwest of the galaxy, but the new higher quality ROSAT images refute this interpretation, resolving this previously interpreted as arc of emission into two distinguished sources while there is not visible substantial IGM where NGC 1961 should plow into[xix].

Hubble Telescope data retrieved from MAST resource permitted a colorful personal post-production of NGC 1961 galaxy:

Shostak teams H1 analysis of the group concluded that while NGC 1961 presents a total mass at least twenty times that of any other group member, NGC 1961 is normal for its type in regard to integral property ratios, and these ratios appear normal, within a factor two, for the other listed galaxies as well. They also noted that the other members of the group have normal masses, with the exception of object B[xx].

About NGC 1961 extraordinary mass, peculiar position at the edge of a small galaxies group of much smaller galaxies and displaying of an unusual head-tail morphology H1 distribution, Shostak and colleagues 1982 suggested that the peculiar form is a simple extension of that of the galaxy, with extraordinary H1 features as a deformation of NGC 1961 itself, rather than the half-consumed remains of an extragalactic object, and its unusual asymmetric morphology with extensive wing of gas extending 30 Kpc to the north-west and a sharp edge to the south-west suggested that the disturbed appearance is due to stripping of the gas in NGC 1961 by a hot intergalactic medium – IGM, discarding the possibility of tidal interaction with another galaxy since there is no one with a large enough mass sufficiently close to NGC 1961. Shostak and team also dismissed the possibility of a merger with another galaxy or an intergalactic gas cloud since they found no trace of a merger remnant such a second nucleus or disturbed velocity distribution in the H1 gas emission[xxi].

According to Lisenfeld and colleagues 1998 the radio records at all frequencies show a peculiar morphology, which is similar to the optical image: bright central nucleus is resolved in the higher resolution images and consists of two peaks – one which corresponds to the optical peak and a second which coincides with a dust lane. Furthermore, a bright radio arm is visible in the south-east, coinciding with the bright optical south-eastern arm. The optical spiral arm extending from the west of the nucleus and to the south is also visible in the radio image. At all frequencies, there is an extended envelope of radio emission visible which surrounds the nucleus and the south-eastern arm [xxii].

Lisenfeld team research focused about spectral analysis revealed details about star formation history featured by an epoch of intense star formation which ended ≤9 x 10⁷ yr ago, with a beginning epoch that cannot be constrained by available data.

Shostak 1982 studies suggested that an encounter of NGC 1961 with an intergalactic cloud could took place less than 5 10⁸ yr ago (the rotation time-scale) and triggered an episode of intense star formation in the south-eastern arm, as also evinced by the optical color images with south-eastern arm of blue color, indicating recent star formation, hypothesis consistent with star formation history inferred by Lisenfeld 1998.

About peculiar morphology of NGC 1961, Shostak thesis focused on the collision of the galaxy with an intergalactic cloud cannot find coherent evidences in Pence and Rots researches of 1997 which didn’t find the massive intergalactic cloud required, nor ionized neither neutral gas.

Lisenfeld and team high resolution radio images revealed the presence of a second nucleus in the center of NGC 1961 consistent with an advanced merger, rather than collision with a massive intergalactic gas cloud, and the disturbed optical and H1 appearance should be explained as such merging remnant[xxiii].

Combes et Al. 2009[xxiv] morphologic and kinematic information gleaned form CO(1-0) and CO(2-1) observations of NGC 1961 has provided a set of important clues which in conjunction with the other data available, contribute to understand the galaxy’s recent dynamic history, with most of molecular gas distributed in a disk whose velocity field is reasonably regular, presenting morphologies and structures quite asymmetric, with a one-armed spiral winding through roughly 270 degrees in azimuth, or more likely a molecular ring, a hint of a nuclear gas bar, a nuclear stellar bar of roughly 1 Kiloparsec in diameter, a a south-western emission coincides with a peak in the near infrared records, at about 5 Kiloparsec from the center of NGC 1691, splitting in three smaller components, suggesting the disruption of a stellar system, and maybe a splitting which could be also partially due to dust. All these data help evaluate the merits of the minor merger and ram pressure stripping scenario which have been discussed upper to account for the large-scale asymmetries seen in the galaxy: Combes evinced, because of the absence of IGM, to the conclusion that a tidal encounter or minor merger is the most likely explanation for NGC 1961’s current state of disruption, and the galaxy interaction cannot be a prograde grazing passage, and the interaction must be as retrograde or nearly head-on, with rings detected which favor a head-on encounter, with small impact parameters, as it seems confirmed by Spitzer IRAC images brought new insight on the true morphology of NGC 1961, with dust emission clearly revealing two off-centered rings, in a morphology similar to the Cartwheel galaxy. The possible existence of the satellite remnant, suggested by Lisenfeld et Al. 1998, il actually supported also by the NIR data that trace the stellar density, with a clearly visible second nucleus, split into three clumps, distant from the NGC 1961 center about 6.1 kiloparsec; Näränen and Torstensson 2004 study shows this satellite nucleus as partially hidden by a dust lane, with star formation process strongly enhanced in the rings, delineated by multiple blue hot spots[xxv].

Hubble data better cropped to galaxy final version


[i] Andreoli C., 2022 “Hubble Studies a Spectacular Spiral” NASA Hubble Mission Team, 1 Min Read 14th September 2022. Cfr.: https://science.nasa.gov/missions/hubble/hubble-studies-a-spectacular-spiral/ [02/01/2024]

[ii] Rubin V. C., Ford W. K., Roberts M. S., 1979 “Extended rotation curves of high-luminosity spiral galaxies. V. NGC 1961, the most massive spiral known” Astrophysical Journal, Vol. 230, p. 35-39 (1979).

Cfr.: https://ui.adsabs.harvard.edu/abs/1979ApJ…230…35R/abstract [29/12/2023]

Pence W. D., Rots A. H., 1996 “X-Ray Properties of the NGC 1961 Group of Galaxies” The Astrophysical Journal, 478 March 20th 1997: 107-111. Cfr.: https://iopscience.iop.org/article/10.1086/303758/fulltext/ [29/12/2023]

[iii] Arp H. C., 1966 “Atlas of Peculiar Galaxies”, Pasadena, Caltech, also in Astrophysical Journal Supplement, vol. 14; Cfr. https://ui.adsabs.harvard.edu/abs/1966ApJS…14….1A/abstract [31/12/2023]

[iv] Fruscione A., Griffiths R. E., 1991 “Search for starbursts among X-ray-selected galaxies – Optical spectroscopy” Astrophysical Journal, Part 2 – Letters (ISSN 0004-637X), vol. 380, Oct. 10, 1991, p. L13-L16. Cfr.: https://adsabs.harvard.edu/full/1991ApJ…380L..13F [29/12/2023]

[v] Shostak G. S., 1978 “Integral properties of late-type galaxies derived from H I observations.” Astronomy and Astrophysic 68, 1978:321. Cfr.: https://ui.adsabs.harvard.edu/abs/1978A%26A….68..321S/abstract [29/12/2023]

[vi] Shostak G. S., Hummel E., Shaver P. A., Van der Hulst J. M. & Van Der Kruit P. C., 1982 Astr. Astrophys., 115:293.

[vii] Gotterman S. T., Hunter Jr. J. H., Shostak G. S., 1982 “The NGC 1961 group of galaxies” Monthly Notices of the Royal Astronomical Society, Vol. 202, 21P-24P (1983). Cfr.: https://ui.adsabs.harvard.edu/abs/1983MNRAS.202P..21G/abstract [31/12/2023]

David L. P., Jones C., Forman W., Daines S., 1994 “ Mapping the Dark Matter in the NGC 5044 Group with ROSAT: Evidence for a Nearly Homogeneous Cooling Flow with a Cooling Wake” The Astrophysical Journal, vol. 428, no. 2, pt. 1, p. 544-554. Cfr.: https://ui.adsabs.harvard.edu/abs/1994ApJ…428..544D/abstract [31/12/2023]

[viii] Shostack et Al., 1982 : 301

[ix] Nilson P., 1973 “Uppsala General Catalogue of Galaxies (UGC)” Uppsala Astron. Obs. Ann. 6., Uppsala Atronom. Obs., Ann.6”; Cfr.: https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.pl?tablehead=name%3Dugc&Action=More+Options and https://heasarc.gsfc.nasa.gov/W3Browse/galaxy-catalog/ugc.html [02/01/2024]

Zwichky F., Herzog E., 1968 “Catalogue of Galaxies and of Cluster Galaxies” Pasadena: California Institute of Technology (CIT), |c1961 https://ui.adsabs.harvard.edu/abs/1961cgcg.book…..Z/abstract [02/01/2024]

Sancisi R., Allen R. J., 1979 “Neutral hydrogen observations of the edge-on disk galaxy NGC 891” Astronomy and Astrophysics, vol. 74, no. 1, Apr. 1979, p. 73-84. Cfr.: https://ui.adsabs.harvard.edu/abs/1979A%26A….74…73S/abstract [02/01/2024]

[x] Nilson P., 1973

[xi] Gotterman et Al., 1983:23.

[xii] Fabbiano G., Kim D. W., Trinchieri G., 1992 “The X-Ray Spectra of Galaxies. II. Average Spectral Properties and Emission Mechanisms” in Astrophysical Journal v.393, p.134. Cfr.: https://ui.adsabs.harvard.edu/link_gateway/1992ApJ…393..134K/doi:10.1086/171492  [29/12/2023]

[xiii] Pence W. D., Rots A. H., 1996:107

[xiv] Bierman P., Kronberg P. P., Madore B. F., 1982 “The detection of hot intergalactic gas in the NGC 3607 group of galaxies with the Einstein satellite” in Astrophysical Journal, Part 2 – Letters to the Editor, vol. 256, May 15, 1982, p. L37-L40 cfr. https://ui.adsabs.harvard.edu/abs/1982ApJ…256L..37B/abstract [31/12/2023]; Forman W., Jones C., 1982 “ X-ray-imaging observations of clusters of galaxies” in Annual review of astronomy and astrophysics. Volume 20. (A83-12176 02-90) Palo Alto, CA, Annual Reviews, Inc., 1982, p. 547-585. Cfr.: https://ui.adsabs.harvard.edu/abs/1982ARA%26A..20..547F/abstract [31/12/2023]

[xv] Dell’antonio J. P., Geller M., J., Fabricant D. G., 1994 “X-ray and optical properties of groups of galaxies” Astronomical Journal (ISSN 0004-6256), vol. 107, no. 2, p. 427-447. Cfr.: https://ui.adsabs.harvard.edu/abs/1994AJ….107..427D/abstract [31/12/2023]

Pildis R. A., Bergman J. N., Evrad A. E., 1995 “ROSAT observations of compact groups of galaxies” Astrophysical Journal v.443, p.514; Cfr.: https://ui.adsabs.harvard.edu/abs/1995ApJ…443..514P/abstract [31/12/2023]

Mulchaey J. S., Davis D. S., Mushotzky R. F., Burstein D., 1996 “An X-Ray Atlas of Groups of Galaxies” The Astrophysical Journal Supplement Series, Volume 145, Number 1. Cfr.: https://iopscience.iop.org/article/10.1086/345736/pdf [31/12/2023]

[xvi] Ponman T. J., Bertram D., 1993 “Hot gas and dark matter in a compact galaxy group” Nature 363, 51–54 (1993). https://doi.org/10.1038/363051a0; also cfr. https://ui.adsabs.harvard.edu/abs/1993Natur.363…51P/abstract [31/12/2023]

David L. P., Jones C., Forman W., Daines S., 1994 “ Mapping the Dark Matter in the NGC 5044 Group with ROSAT: Evidence for a Nearly Homogeneous Cooling Flow with a Cooling Wake” The Astrophysical Journal, vol. 428, no. 2, pt. 1, p. 544-554. Cfr.: https://ui.adsabs.harvard.edu/abs/1994ApJ…428..544D/abstract [31/12/2023]

[xvii] Snowden S. L., Mc Cammon D., Burrows D. N., Mendenhall J. A., 1994 “Analysis Procedures for ROSAT XRT/PSPC Observations of Extended Objects and the Diffuse Background” Astrophysical Journal v.424, p.714.

Cfr.: https://ui.adsabs.harvard.edu/abs/1994ApJ…424..714S/abstract [02/01/2024]

[xviii] Reichart G. A., 1993 “The ROSAT IDL Recipes Cookbook (Greenbelt, MD, GSFC)

[xix] Pence et al., 1997: 109, 110

[xx] Shostak et Al., 1982: 301

[xxi] Ibidem

[xxii] Lisenfeld U., Alexander P., Pooley G. G., Wilding T., 1998 “Cosmic ray propagation and the star formation history of NGC 1961” Monthly Notices of the Royal Astronomical Society, Volume 300, Issue 1, pp. 30-38.

Cfr.: https://ui.adsabs.harvard.edu/abs/1998MNRAS.300…30L [02/01/2024]

[xxiii] Lisenfeld et Al., 1998: 37

[xxiv] Combes F., Baker A. J., Schinner E., Garcia-Burillo S., Hunt L. K., Boone F., Eckart A., Neri R., Tacconi L. J., 2009 “Molecular gas in NUclei of GAlaxies (NUGA)* XII. The head-on collision in NGC 1961” Astronomy & Astrophysic Journal Volume 503, Number 1, August III 2009 https://www.aanda.org/articles/aa/full_html/2009/31/aa12181-09/aa12181-09.html [02/01/2024]

[xxv] Combes et Al., 81.

SMACS J0723.3-7327 Galaxy Cluster: Gravitational Lenses

No Comments

A gravitational lens, as predicted by Einstein general theory of relativity, is a distribution of matter or a point particle between a distant light source and an observer, and such matter is capable to bending light from the source as light travels toward the observer, and although Einstein made unpublished calculations in 1912, Khvolson 1924 and Link 1936 officially first discussed the effect of gravitational lens, however the official study is more commonly associated to Einstein 1936. 

Cfr. : Khvolson O. 1924 : Über eine mögliche Form fiktiver Doppelsterne “ in Astronomische Nachrichten 221 (20): 329-330

Einstein A. 1936 “Lens-like action of a star by the deviation of light in the gravitational field” in Science 84 (2188):506-507

Unlike an optical lens, a point-like gravitational one produces as maximum deflection of light as the closest light passes to its center, and a minimum furthest from it, consequently scholars commonly agree that such gravitational lens has no focal point but focal line. 

Observations in fact demonstrated that if the light source, the massive matter acting as a lens, and the observer all lie in a straight line, the original source will appear as a ring around the massive lensing object named “Einstein ring”, or “Einstein–Chwolson ring” or “Chwolson ring “: ring effect was first mentioned in the academic literature by Orest Khvolson in previously mentioned article of 1924, in which he mentioned the “halo effect” of gravitation when the source, lens, and observer are in near-perfect alignment. 

Misalignment between the observer, matter lens and source of light will be appreciate by observer like an arc segment. 

Ring-like structure, size, and family of multiple source of light geometry observation and measurement:

The geometry of a complete Einstein ring, caused by a gravitational lens with the size given by the Einstein radius.

Micro lensing techniques have been used to search for planets outside our solar system, as for instance according to Cassan et al. 2012 statistical analysis of specific cases of observed microlensing over a period of 2002 to 2007 found that most stars in the Milky Way galaxy hosted at least one orbiting planet within 0.5 to 10 astronomical units. 

Cfr. Cassan A. , Kubas D. , Beaulieu J. , Dominik M. , Horne K. , Greenhill J. , Wambsganss J. , Menzies J. , Williams A. 2012 “One or more bound planets per Milky Way star from microlensing observations” in Nature 481 (7380):167-169

Galaxy cluster

According to Atek et al. 2015 galaxy clusters can be considered as the most massive structure in actual known Universe and are therefore powerful cosmic instruments for observing faint and distant sources via gravitational lensing effect. 

As indicated by Caminha et al. 2016b and by Vanzella et al. 2020, 2021, lensing magnification obtained by observing trough galaxy cluster can reach factors of ~ 100 – 1000, as when a background source of light, i.e. a galaxy, lies between observer and galaxy cluster, light rays from the sources are deflected by gravitational potential of the foreground cluster; source is thus gravitationally lenses by the cluster. 

Moreover, as suggested by Bradač et al. 2006 and by Clowe et al. 2006, position and morphologies of multiple lensed images also allow to speculate about the distribution of matter, particularly dark matter, in the galaxy cluster, crucial topic for understanding nature of dark matter. 

Julio et al. 2010, Acebron et al. 2017, Caminha et al. 2016a and 2022 pushed further, as an individual galaxy cluster often lenses several background sources into several corresponding “families” of multiple images that straddle different locations around the galaxy cluster, and families of multiple images formed by sources in different redshift provide possible measurements of angular diameter distance ratios between cluster and source, allowing researchers to focus about the study of the geometry of the universe. 

Refsdal 1964; Suyu et al. 2010; Kelly et al. 2015; Grillo et al. 2018 and 2020 believe that strong lensing galaxy clusters are therefore excellent laboratories for astrophysical and cosmological studies as in case where a background source is timy-varying, as a quasar or a supernova, the time delays between multiple images study provides to speculate measurements of the “time-delay distance” and the Hubble constant that sets the expansion rate of actual known Universe. 

According to Rigby et al. 2022, James Webb Space Telescope operating in infrared provides unprecedented observation of high-redshift sources in terms of sensitivity and angular resolution. 

Combination of JWST capacities and galaxy cluster lensing consent to observe inherently faint sources like distant galaxies which are the first formed and which evolved into structures that we see today. 

Among these targets JWST focused on its first cosmic target to galaxy cluster SMACS J0723.3-7327 discovered by Ebeling et al. 2001 and Repp & Ebeling 2018. 

According to Caminha et al. 2022 JWST observations practically doubled number of families of multiple images previously detected by Hubble Space Telescope. 

Hubble observations of SMACS J0723 cover an area of 3.36 arcmin x 3.36 arcmin and were obtained by f435w, f606w and f814w filters of ACS – Advanced Camera for Surveys, and in f105w, f125w, f140w and f160w of WFC3 – Wide Field Camera 3 all available and retrieved at Mikulski Archive. 

Caminha et al. 2017b, 2019 and 2022 produced by Hubble data plus MUSE data of SMACS J0723 a final redshift catalogue containing 78 secure and precise redshift measurements. 

SMACS J0723 was observed by James Webb scope by Near Infrared Camera – NIRCam and MIRI – Mid-Infrared Instrument and spectroscopy was obtained trough the NIRSpec – Near Infrared Spectrograph. 

According to Pontoppidan et al. 2022 and Méndez-Abreu et al. 2023, with a single filter total exposure of about 7.500 seconds divided in nine dither patterns to optimize image quality NIRCam records were taken on 2022 June 7th, carried out in filters f090w, f150w, f200w, f277w, f356w and f444w, covering a wavelength range between 0.8nm to ~ 5.0nm. 

Webb scope NIRCam FoV observes a 9.7 arcmin 2 (al quadrato) field with a ~44 arcsec gap separating two 2.2 arcmin x 2.2 arcmin areas, with one camera centers on the cluster and another on an adjacent field, covering a smaller area of J0723 respect to Hubble imaging. 

According to Caminha et al. 2022, Webb Scope NIRCam wavelengths and high spatial resolution records, aligned to HST data took to identify new 30 additional secure multiple images from 11 individual sources, extremely faint or not detected in the Hubble optical and near infrared imaging, whilst Before the release of James Webb scope NIRCam imaging of  SMACS J0723 dataset available from Hubble plus photometry from RELICS program and spectroscopy from MUSE identified 23 cluster members in the redshift range of 0.367 – 0.408 corresponding to a rest-frame velocity of + – 3000 km/s from the cluster mean redshift of z=0.387; these pre JWST studies evinced according to Caminha et Al. 2022 in 19 multiple images as input from six families. 

In conclusion, Webb scope actual studies of NIRCam records focused about SMACS J0723 scholars have doubled the number of model constraints, increasing the number of multiple images from the 19 identified with Hubble and MUSE datasets to 49. 

According to Méndez-Abreu and colleagues 2023 observations obtained by NIRCam provides new data in the study of the evolution of barred galaxy, as the central role of stellar bars in the secular evolution of galaxies discs is generally accepted: as founded by Hubble 1926 and Buta et al 2015 they represent the main structure modifying the morphology of galaxies in the central ~ kpc and according to Debattista & Sellwood 2000, Martinez-Valpuesta et al. 2007 and Sellwood 2014 they influence the angular momentum redestribution between the baryon of and dark matter component of galaxies. 

Evolution of the bar fraction with cosmic time has been matter of several studies due to its implications on the settlement of the first rotationally dominated discs. According to Sellwood 2014 and Méndez-Abreu 2023 bars can be formed spontaneously in cold galaxy discs in a relative quick phase (<=1 Gyr) and assuming as right as they are long lived, the presence of a bar can be used as a clock to time the formation of discs. 

Martinet & Friedli 1997, Sheth et al. 2005, Ellison et al. 2011 identify in galaxies bars the parts with the ability to funnel material towards the galaxy core where starburst can ignite; Kormedy & Kennicut 2004, Athansas-soula 2005, Bittner et al. 2020 with Gadotti et al. 2020, all agree that they contribute to the formation of bulge-like structures. 

Buta 1995, Muñoz-Tuñón et al. 2004 identifies in bars the main inner star forming ring’s cause. 

Importance of bars in understanding galaxy evolution is also given by their ubiquity in disc galaxies in the local Universe (z < 0.1) with actual galaxy population optical studies generally described as barred by ~50%, with slight increase by infrared observations; Cfr. Aguerri et al. 2009; sbarazza et Al. 2008, Eskridge et al. 2000, Marinova & Jogee 2007, Menéndez-Delmestre et al. 2007, Erwin 2018. 

According to Méndez-Abreu and colleagues 2023 most of our knowledge about the formation and evolution of bars has been produced using local galaxy samples, and studying SMACS J0723.3-7327 galaxy cluster using the new capabilities of Webb scope coincides with the possibility of measure the fraction of barred galaxies in a cluster with redshift z=0.39, and NIRCam imaging features overcome previous problem of spatial resolution, bar identification at rest-frame wavelengths, and depth of the observations. 

Méndez-Abreu et al 2023 studies for barred galaxies identification and classification started from NIRCam f200w filter integration master, with first step as identification of cluster J0723 members, consisting in 188 certain galaxies. 

Identification of bars was made by Méndez-Abreu setting up a private project using the Zooniverse Panoptes Project Builder, creating .fits cutouts of cluster members and converting each one in a single arcsinh stretched frame, with the result of 20 secure barred galaxies and 15 uncertain out of 188 members. 

Méndez statistical analysis shows that bar fraction distribution in SMACS J0723 cluster is a strong function of galaxy mass, results which compared with the state of art of observational and theoretical studies appears little increasing, probably dued both to different criteria in selection (angular momentum vs morphology) and improved capabilities of JWST/NIRCam respect to previous instrument in terms of spatial resolution and image depth. 

The mechanism inhibiting the formation of bars in cluster seems act relatively quickly after galaxies enter into the cluster potential, with a scenario where cluster environment affects the formation of bars in a mass-dependent way. At high masses it seems plausibile to assert a weak effect of cluster environment possibly triggering bar formation, whilst at low masses galaxies bars formation seems to be severely inhibited by cluster setting. 

M16 (NGC 6611) and the Pillars of Creation

No Comments

Astrobin:

M16 (NGC 6611) Eagle Nebula, or Star Queen Nebula, was discovered in 1745 by the Swiss astronome Jean-Philippe de Cheseaux while in 1745 and 1746, De Chéseaux compiled a list of 21 nebulous objects, of which he had originally discovered 8 objects: IC 4665, NGC 6633, M16, M25, M35 (this one might have seen before by John Bevis in England), M71, M4, and M17. Moreover, he independently re-discovered M6, NGC 6231 and M22 (No. 17). 

De Chéseaux sent this list to his grandfather, Reaumur, in Paris, and it was read by Reaumur at a meeting of the French Academy of Sciences on August 6, 1746 and mentioned by Jean Maraldi in 1746 (Maraldi 1751), by Le Gentil in 1759 (Le Gentil 1765), but then stayed unpublished and more or less forgotten until Guillaume Bigourdan recovered and published it within a larger paper in 1884 (Bigourdan 1892).

For Cheseaux observation cfr.: http://www.messier.seds.org/xtra/similar/deches.html [18/07/2023]

M16 was independently rediscovered, and nebula IC 4703 discovered, by Charles Messier on June 3, 1764.

This nebula lies in the Sagittarius Arm of the Milky Way and became famous as the “Pillars of Creation” imaged by the Hubble Space Telescope. 

The nebula contains several active star-forming gas and dust regions, and is part of a diffuse emission nebula H II region, which is catalogued as IC 4703. 

This region of active current star formation is about 5700 light-years distant. 

According to NASA, ESA, and The Hubble Heritage Team (STScI/AURA) [ https://esahubble.org/images/heic0506b/ ] among peculiarities there’s the 90 trillion kilometers long spire of gas that can be seen coming off the nebula in the northeastern part appearing like a winged fairy-tale creature poised on a pedestal, this object is actually a billowing tower of cold gas and dust rising from a stellar nursery called the Eagle Nebula. 

The name “Pillars of Creation” explains the gas and dust disposed in pillars clouds which are in the process of creating new stars, while also being eroded by the light from nearby stars that have recently formed, and it was given after the Hubble picture taken on April 1, 1995.

Astronomers responsible for the photo were Jeff Hester and Paul Scowen from Arizona State University. 

According to DeVorkin and Smith, 2015 [Devorkin, David H.; Smith, Robert W., 2015 “The Hubble Cosmos: 25 Years of New Vistas in Space.” National Geographic Society: 67 this name is based on a phrase used by Charles Spurgeon in his 1857 sermon “The Condescension of Christ”: by calling the Hubble’s spectacular image of the Eagle Nebula the Pillars of Creation, NASA scientists were tapping a rich symbolic tradition with centuries of meaning, bringing it into the modern age. 

As much as we associate pillars with the classical temples of Greece and Rome, the concept of the pillars of creation – the very foundations that hold up the world and all that is in it – reverberates significantly in the Christian tradition. When William Jennings Bryan published The World’s Famous Orations in 1906, he included an 1857 sermon by London pastor Charles Haddon Spurgeon titled “The Condescension of Christ”. In it, Spurgeon uses the phrase to convey not only the physical world but also the force that keeps it all together, emanating from the divine: “And now wonder, ye angels,” Spurgeon says of the birth of Christ, “the Infinite has become an infant; he, upon whose shoulders the universe doth hang, hangs at his mother’s breast; He who created all things, and bears up the pillars of creation, hath now become so weak, that He must be carried by a woman!”

According to Bally et. Al., the pillars are composed of cool molecular hydrogen and dust that are being eroded by photoevaporation from the ultraviolet light of relatively close and hot stars. The leftmost pillar is about four light years in length. The finger-like protrusions at the top of the clouds are larger than the Solar System, and are made visible by the shadows of evaporating gaseous globules (EGGs), which shield the gas behind them from intense UV flux.[10] EGGs are themselves incubators of new stars.

The stars then emerge from the EGGs, which then are evaporated.

Cfr.: Bally, J.; Morse, J.; Reipurth, B. (1996). “The Birth of Stars: Herbig-Haro Jets, Accretion and Proto-Planetary Disks”. In Benvenuti, Piero; Macchetto, F.D.; Schreier, Ethan J. (eds.). Science with the Hubble Space Telescope – II. Proceedings of a workshop held in Paris, France, December 4–8, 1995. Space Telescope Science Institute. https://ui.adsabs.harvard.edu/abs/1996swhs.conf..491B/abstract [18/07/2023]

IRAS 20324+4057 – Hubble Space Telescope

No Comments

IRAS 20324+4057
Hubble Space Telescope, ACS/WFC, filters f606W, f658N, f814W
Calibrated .fit data retrieved from MAST – Mitsuki Archive for Space Telescopes
https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
Very hard postproduction for hot pixel removing and color rendering of this incredible beauty.

Astrobin: https://www.astrobin.com/g3o3lr/

.fit data retrieved from MAST – Mitsuki Archive for Space Telescopes
https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html

Very hard postproduction for hot pixel removing and color rendering of this incredible beauty.

Photoshop master with layer available here : https://www.dropbox.com/s/fjpf511o096bt84/HST-IRAS%2020324%2B4057-f606Wf658Nf814W.psd

RAW .fit data available here (.zip folder) : https://www.dropbox.com/s/839zuqj48fnki0o/RAW%20.zip